Abstract

In this paper, the laminar forced convection heat transfer of nanofluid through a bent channel was numerically investigated. The lattice Boltzmann method was used for solving the governing equations in the domain. The effect of different parameters such as Reynolds number (50 ≤ Re ≤ 150), vertical passage ratio (2.0 ≤ M ≤ 4.0), and nanoparticle solid volume fractions (Φ = 0, 0.01, 0.03, 0.05) are analyzed in terms of streamlines, isotherms, and local Nusselt numbers. It was concluded from this study that the local and average Nusselt number increased with increasing nanoparticle volume fraction regardless of Re and M. Moreover, the effect of the nanofluid concentration on the increment of heat transfer was more remarkable at higher values of the Reynolds number. Simulations show that by increasing the Reynolds number or decreasing the vertical passage ratio, the local and average Nusselt number increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call