Abstract
In this paper, the laminar forced convection heat transfer of nanofluid through a bent channel was numerically investigated. The lattice Boltzmann method was used for solving the governing equations in the domain. The effect of different parameters such as Reynolds number (50 ≤ Re ≤ 150), vertical passage ratio (2.0 ≤ M ≤ 4.0), and nanoparticle solid volume fractions (Φ = 0, 0.01, 0.03, 0.05) are analyzed in terms of streamlines, isotherms, and local Nusselt numbers. It was concluded from this study that the local and average Nusselt number increased with increasing nanoparticle volume fraction regardless of Re and M. Moreover, the effect of the nanofluid concentration on the increment of heat transfer was more remarkable at higher values of the Reynolds number. Simulations show that by increasing the Reynolds number or decreasing the vertical passage ratio, the local and average Nusselt number increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.