Abstract
The behavior of nanoprecipitates of 800Mpa grade high strength low carbon steel during tempering has been studied. Transmission electron microscope (TEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive spectrometry (EDS) were used to systematically analyze the morphology of precipitates and their grain orientation with matrix at different tempering temperatures. Experimental results confirm that the composition of these nanometer sized particles in the matrix was compound carbonitrides containing Ti, V, Mo and other elements. The precipitates of the as-received steel are (Nb,Ti)(C,N) at low tempering temperature, while those at high tempering temperature are composite carbides containing a variety of elements such as Mo, V, Ti and Nb. On the other hand, as tempering temperature increases, precipitates in the steel were slowly growing up and roughening according with the typical Oswald ripening mechanism; a sharp orientation relationship exists between precipitates and matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.