Abstract
Silicon-based heterojunction (SHJ) solar cells demonstrate high efficiencies over their homojunction counterparts, revealing the potential of such technologies. We present here the first steps towards the development of molybdenum disulfide (MoS2)/c-silicon heterojunction solar cells, consisting of a preliminary study of the MoS2 material and numerical device simulations of MoS2/Si heterojunction solar cells, using SILVACO ATLAS. Through the optical and structural characterization of MoS2/SiO2/Si samples, we found a significant sensitivity of the MoS2 to ambient oxidation. Optical ellipsometry showed a bandgap of 1.87 eV for a 7 monolayer thick MoS2 sample, suitable for the targeted application. Finally, we briefly introduce a device simulation and show that the MoS2/Si heterojunction could lead to a gain in quantum efficiency, especially in the region with short wavelengths, compared with a standard a-Si/c-Si solar cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.