Abstract

BackgroundMorphological convergence triggered by trophic adaptations is a common pattern in adaptive radiations. The study of shape variation in an evolutionary context is usually restricted to well-studied fish models. We take advantage of the recently revised systematics of New World Ariidae and investigate skull shape evolution in six genera of northern Neotropical Ariidae. They constitute a lineage that diversified in the marine habitat but repeatedly adapted to freshwater habitats. 3D geometric morphometrics was applied for the first time in catfish skulls and phylogenetically informed statistical analyses were performed to test for the impact of habitat on skull diversification after habitat transition in this lineage.ResultsWe found that skull shape is conserved throughout phylogeny. A morphospace analysis revealed that freshwater and marine species occupy extreme ends of the first principal component axis and that they exhibit similar Procrustes variances. Yet freshwater species occupy the smallest shape space compared to marine and brackish species (based on partial disparity), and marine and freshwater species have the largest Procrustes distance to each other. We observed a single case of shape convergence as derived from ‘C-metrics’, which cannot be explained by the occupation of the same habitat.ConclusionsAlthough Ariidae occupy such a broad spectrum of different habitats from sea to freshwater, the morphospace analysis and analyses of shape and co-variation with habitat in a phylogenetic context shows that conservatism dominates skull shape evolution among ariid genera.

Highlights

  • Morphological convergence triggered by trophic adaptations is a common pattern in adaptive radiations

  • Morphospace occupation, morphological disparity, and quantification of shape differences To investigate whether species that live in a similar habitat evolved similar phenotypes – here assessed by skull shape – we inferred the shape space that is occupied by 28 Neotropical ariid and one doradoid species (270 individuals, 7 genera) living in marine, brackish, and freshwater habitats (Fig. 3)

  • When the same scatterplot is coloured by genus, we see that species that belong to the same genus cluster together and mostly overlap to a certain degree, and that only Bagre — a pure marine genus — in its full shape range occupies an individual shape space at negative PC1 values opposite of freshwater species

Read more

Summary

Introduction

Morphological convergence triggered by trophic adaptations is a common pattern in adaptive radiations. The other approach (ii) examines species diversification from an adaptational perspective by investigating factors such as predator avoidance, niche occupation, or ecological functioning. In this context, previous studies either focused on the biomechanical link of skull or mandible shape to functional ecology [13,14,15,16,17] or explicitly investigated convergent evolution of skull shape and biotic and Stange et al BMC Evolutionary Biology (2018) 18:38 abiotic covariates [6, 16, 18, 19]. In terrestrial vertebrates the impact of phylogenetic dependence on shape similarity among closely related taxa has been tested explicitly [26, 28, 29] and several studies have examined these in teleost fishes, as well, using individual adaptive traits for ecological niches [30,31,32]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call