Abstract
The molybdenum electrode, Mo, has been investigated for hydrogen production via water electrolysis in 10 vol.% aqueous solutions of 1-butyl-3-methylimidazolium tetrafluoroborate (BMI·BF4) using electrochemical impedance spectroscopy (EIS). The EIS measurements show that the Mo system has much higher interfacial capacitance, and correspondently the electrical double layer formed on this electrode is thicker than those formed on nickel or platinum. The positive displacement of potential of zero charge (PZC) values indicates the specific adsorption of the imidazolium cation on the Mo surface. This study provides an elegant explanation for the better performance of Mo electrodes in the hydrogen evolution reaction (HER): the BMI cation acts as an intermediate for the proton transfer from water to the electrode surface, thereby decreasing the overpotential of HER. This model explains the synergism between Mo and the BMI cation in the HER process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.