Abstract

Graphene has been widely used as a nanofiller in advanced electronic devices and nanocomposite materials to achieve enhanced electronic, mechanical, and barrier properties. Adequate polymers play the role of the composite matrix and can assist in the liquid-phase exfoliation of pristine graphene without any heavy chemical modification and the detriment of the properties of graphene. This stabilization mechanism is generally attributed to the steric forces formed between the polymer-adsorbed adsorbent. However, the key influence of the polymer concentration on the maximum graphene content in the colloidal solutions is still unclear. In this study, three different molar weights of water-soluble polyvinyl alcohol (PVA) were used for graphene dispersion. The influence of the PVA concentration on the graphene dispersion was systematically studied. Based on Flory's theory, we first proposed a model to describe the polymer adsorption process in the graphene/PVA/water ternary system in the "dilute" regime and simulated the adsorption-free energy changes during this transformation. This model is in good agreement with the experimental results and explains the critical polymer concentration, Cc, allowing the optimization of the graphene/polymer ratio. This fundamental understanding of polymer physisorption on 2D materials provides a simple method for producing nanocomposites with controlled nanosheet/polymer ratios and structures, which are of great interest for energy devices and biomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call