Abstract

This work investigates the molecular interaction of hydrocolloids (xanthan gum (XG), hydroxyethyl cellulose (HEC), carbomer (CBM) and hymagic™-4D (HA)) with sodium alginate (SA) in microspheres in detail. The molecular interaction of hydrocolloids with SA are demonstrated by the rheological property analysis of the mixed solutions as well as the morphology structure and texture characteristics studies of the microspheres. It is found that the hydrocolloids (XG, HEC and CBM) with branches or capable to coil are able to form complex networks with SA through molecular interactions which hinders the free diffusion of calcium ions and changes the texture characteristics of microspheres. In addition, the mixed solutions (SA-XG and SA-HEC) with complex networks and do not have a chelating effect on calcium ions are used to form the shell of the microcapsules through droplet microfluidic technology, and stable with soft microcapsules encapsulating multiphase oil cores have been successfully prepared. At the same time, the textural properties of microcapsules are quantized, which are related to human sensory properties. The developed stable and soft microcapsules which have the properties of sensory comfort are expected to be applied in the personal care industry and a variety of fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.