Abstract

We synthesized graphene oxide (GO) doped with transition metal ions and characterized it using XPS, FT-IR, TGA/DTG, XRD, SEM, AFM, ICP-OES, UV/vis, and Raman spectroscopy. An intrinsic viscosity [η] of 0.002-0.012 g% @ 0.002 aq-GO was determined for viscosity average molecular weight (M v) of GO at 288.15, 298.15, and 308.15 K. Mark-Houwink (M-H) constants k (cm3 g-1) and a (cm3 mol g-2) were calculated for 5-15 mg/100 mL polyvinylpyrrolidone (PVP), using 29, 40, 55 kg mol-1 as markers for calculating M v by fitting the [η] to the Mark-Houwink-Sakurada equation (MHSE). We obtained 48 134.19 g mol-1 M v at 298.15 K, and the apparent molar (V ϕ m , cm3 mol-1), limiting molar volumes (V 0 GO)GO⃑0, enthalpy (ΔH m, J mol-1), entropy (ΔS m, J mol-1 K-1), viscosity (η m, mPa s mol-1), surface tension (γ m, mN m-1 mol-1), friccohesity (σ m, scm-1 mol-1), fractional volume (ϕ m, cm3 mol-1), isentropic compressibility (K sϕ,m, 10-4 cm s2 g-1 mol), infer GO molar consistency throughout the chemical processes. Molar properties (MPs) infer a GO monodispersion producing negative electrons (e-) and positive holes (h+) under sunlight. The transition metal ions (Fe2+, Mn2+, Ni2+, Cr3+, TMI) doped onto GO (TMI-GO), can photodegrade methylene blue (MB) in 60 min compared with 120 min using GO alone. The 4011 C atoms, 688 hexagonal sheets, 222 π-conjugations, and 4011 FE were calculated from the 48 134.19 g mol-1. The functional edges are the negative and positive holes generating centres of the GO 2D sheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call