Abstract

A set of surfaces featuring pillars with overhanging cap structures, exhibiting superoleophobic behavior, were fabricated using a new method. While such structures have been previously reported, in contrast with previous literature this new method allows for the control of pillar cross-sectional diameter, pillar separation, and Cassie fraction independent from the pillar radius-to-height ratio. Once fabricated the contact angles of the surfaces were examined using water, ethylene glycol, and hexadecane. These surfaces were capable of maintaining a stable Cassie state with hexadecane where surfaces with similar Cassie fraction but vertical sidewalls we had examined previously collapsed into the Wenzel state. The overall behavior of the liquids conforms to prior experience with vertical sidewall structures, with the advancing contact angles tending to remain high and insensitive to changing Cassie fraction while the receding contact angles follow the trends predicted by the Cassie equation much more closely. All experimental evidence taken together, this seems to indicate that the cap structures increase the stability of the Cassie state, but at the expense of increasing drop pinning, over and above what such surface texturing already does.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.