Abstract

This paper investigates the effects of slowly varying parametric excitation on the dynamics of van der Pol system. Periodic bifurcation delay behaviors are exhibited when the parametric excitation slowly passes through Hopf bifurcation value of the controlled van der Pol system. The first bifurcation delay behavior relies on initial conditions, while the bifurcation delay behaviors that follow the first one are immune to initial conditions. These bifurcation delay behaviors result in a hysteresis loop between the spiking attractor and the rest state, which is responsible for the generation of mixed-mode oscillations. Then an approximate calculation for the number of spikes in each cluster of repetitive spiking of mixed-mode oscillations is explored based on bifurcation delay behaviors. Theoretical results agree well with numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.