Abstract
ObjectivesTo characterize serum microRNA (miR) and the miR interactome of active RA patients in RA aetiology and pathogenesis.MethodsThe differentially expressed miRs (DEmiRs) in serum of naïve active RA patients (NARAPs, n = 9, into three pools) vs healthy controls (HCs, n = 15, into five pools) were identified with Agilent human miR microarray analysis. Candidate driver genes in epigenetic and pathogenic signalling pathway modules for RA were analysed using miRTarBase and a molecular complex detection algorithm. The interactome of these DEmiRs in RA pathogenesis were further characterized with gene ontology and Kyoto Encyclopaedia of Genes and Genomes.ResultsThree upregulated DEmiRs (hsa-miR-187-5p, -4532, -4516) and eight downregulated DEmiRs (hsa-miR-125a-3p, -575, -191-3p, -6865-3p, -197-3p, -6886-3p, -1237-3p, -4436b-5p) were identified in NARAPs. Interactomic analysis from heterogeneous experimentally validated sources yielded 1719 miR–target interactions containing 5.67% strong and 94.33% less strong experimental evidence. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes analyses allocated the upregulated DEmiRs in the infection modules and the downregulated DEmiRs in the immune signalling pathways. Specifically, these DEmiRs revealed the significant contributions of the intestinal microbiome dysbiosis in the infection–inflammation–immune network for activation of T cells, immune pathways of IL-17, Toll-like receptor, TNF, Janus kinase-signal transducer and activator of transcription, osteoclast cell differentiation pathway and IgA production to the active RA pathogenesis.ConclusionsOur experiment-based interactomic study of DEmiRs in serum of NARAPs revealed novel clinically relevant miRs interactomes in the infection–inflammation–immune network of RA. These results provide valuable resources for understanding the integrated function of the miR network in RA pathogenesis and the application of circulating miRs as biomarkers for early aetiologic RA diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.