Abstract

The spin gradient viscosity with power-law model and its representation of the heat transfer capabilities of nanofluids have been examined. The theoretical analysis provides an insight into the heat conduction properties of shear-thinning and the shear-thickening fluids. Boundary-layer-approximation-based nonlinear partial differential equations are transformed into nonlinear ordinary differential equations before their solution is approximated by the finite-difference-based Keller box method. The results demonstrate that the heat exchange in nanofluids is affected substantially by the index exponent and the modified material parameter. In addition, the physical quantities of interest from the engineering perspective, the Nusselt and the Sherwood numbers, are calculated to examine the heat and mass transport efficiency of the nanofluids. It is discovered that the temperature profile augments with an increase in the Brownian motion and thermophoresis parameters and decreases with an increase in the Prandtl number and power-law index. However, the concentration deceases with a rise in the Brownian motion parameter and Lewis number, but increases with an increase in the thermophoresis parameter, Prandtl number, and the power-law index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call