Abstract

ABSTRACT In the microcellular foam plastic processing, cellular formation stage was being an essential stage since the nucleation and growth of the cell take place within. Based on classical nucleation theory, diminution of the free energy for nucleation, exponentially lead to an increase in the nucleation rate. This can be done by increasing the super-saturation level which achieved by heating the gas-saturated polymer. Hence, the advance is taken out by utilizing the ultrasound wave simultaneously with heating for foaming Polystyrene-scCO2, which, not only to keep the super-saturation degree but also reduce the nucleation barrier. In this work, foaming was conducted under 45 kHz of ultrasound and varying the foaming temperature after saturating polystyrene with scCO2. The results demonstrate, that foaming under ultrasound, the expansion ratio attained up to 1.5 fold, increase along with the heating temperature. Higher cell densities obtained with ultrasound applied at 50°C, however only slight difference can be seen, which about 1010–1011 cell/cm3. From the cell size distribution results, cell distributed around 0.5–3.5 µm, with or without ultrasound applied for 60 and 70°C, Meanwhile at 50°C of foaming, the lowest cell size obtained with the aid of ultrasound in the range of 0.3–2.4 µm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.