Abstract

Present study introduces low-frequency workpiece vibration during micro-EDM drilling of difficult-to-cut tungsten carbide with an objective to overcome the difficulty in flushing of debris and machining instability in deep-hole machining. The effects of vibration frequency, amplitude and electrical parameters on the machining performance, as well as surface quality and accuracy of the micro-holes have been investigated. It is found that the overall machining performance improves significantly with significant reduction of machining time, increase in material removal rate (MRR), and decrease in electrode wear ratio (EWR). The surface quality improves and the overcut and taper angle of the micro-holes reduces after applying the workpiece vibration in micro-EDM. The frequency and amplitude of 750 Hz and 1.5 μm were found to provide optimum performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call