Abstract
In the research the results of bioethanol and other valuable products formation are described during peat hydrolytic formation. The factors of cellulose-lignin raw materials (peat and wood sawdust) stability to the action of various hydrolyzing agents were determined. The obtained experimental data indicate the efficiency of peat and sawdust samples pre-treatment with H2SO4 (90 wt.%), which is expressed in the highest yield of reducing substances during hydrolysis of the samples, in comparison with the results obtained with H2SO4 pretreatment of a lower concentration. The article shows the results of cellulose-containing raw materials hydrolysis process study with various ways, including enzymatic treatment. Enzyme complex sample of Celloviridine, containing both exo-and endo-enzymes, was used. Qualitative and quantitative analysis of the cellulose-lignin-containing raw materials hydrolysis products was carried out using high-performance liquid chromatography. It was found that the maximum rate of glucose accumulation (the final product of the hydrolytic process of cellulose-lignin raw materials) was observed when using samples of peat and sawdust pretreated with H2SO4 (90wt.%). As a result of cellulosulignin raw material subsequent enzymatic hydrolysis, the amount of D-glucose in the hydrolyzate increased with the help of the Celloviridin preparation in comparison with its amount in the H2SO4 pretreatment. A comparative characterization of the raw material efficiency for the yield of the desired product - D-glucose is shown. In the process of combined hydrolysis of cellulose and lignin-containing raw materials the maximum yield of the monosaccharide was observed during the hydrolysis of peat samples. After appropriate neutralization the resulting hydrolysis solution can be used to produce bioethanol and bacterial biomass in the microbial synthesis of products used for animal feed, as well as for pharmaceutical practice.Forcitation:Lakina N.V., Doluda V.Yu., Sulman E.M., Shkileva I.P., Burmatova O.S. Study of method of processing cellulosic and lignin-containing raw materials using cellulolytic enzymes. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 1. P. 78-83
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.