Abstract

The effect of extrusion temperature and extrusion drawing ratio (EDR) on the die swell ratio (DSR) and mechanical properties of metallocene-catalyzed linear low-density polyethylene (m-LLDPE) was examined with the application of solid-state extrusion (SSE). Scanning electron microscopy (SEM) was employed to characterize the microstructure and morphology of the extrudates. Extruded from a convergence-divergence die, compared with samples obtained by melt-state extrusion (MSE), the DSR decreases for SSE samples prepared at low extrusion temperature and high EDR. Mechanically strong SSE samples were also obtained at low extrusion temperatures and high EDR. Mechanically strong SSE samples were also obtained at low extrusion temperatures and high EDR. SEM indicates that the microstructures of the MSE samples consist primarily of ring-banded spherulites; the microstructure of the SSE samples was microfibers oriented along the direction of extrusion. The highly oriented microfibers contribute to the improved mechanical strength of the SSE samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.