Abstract

Considering the nanofabrication errors, the real fabricated metallic nanowires may have irregular cross-sectional shapes. In this work, the metallic nanowires array with arbitrary cross-sectional shapes for negative refraction in visible regime was studied theoretically. To fully understand the evolution process of the negative refraction of the metallic wires with irregular cross-sectional shapes, the effective refractive index, effective mass, and effective radius of the wires were put forth and studied. The nanowire array with arbitrary cross-sectional shapes with different geometrical parameters was investigated in detail by means of computational numerical calculation on the basis of finite difference and time–domain algorithm. The influence of geometrical parameters of the nanowires on negative refraction was systematically analyzed. The calculated results indicate that the irregular shape can play a positive role for the negative refraction-based imaging application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.