Abstract

STFs have been widely used for soft body-armor because of STF reversible and repeatable thickening characteristics. However, shear thickening mechanism characterized by rheological properties cannot well explain thickening mechanism of STF against the penetrations and impacts. In this study, a cycle experiment of quasi-static squeeze and pull-out of STF by metal rod were carried out on the INSTRON. Effects of velocity, interface condition and boundary et al were discussed. Typical displacement-load curves show that STF thicken in the normal load when the rate reach critical value. Taking a pull-out experiment as example, force without thickening of STF is a constant value, about 1.5 N. The maximum force with thickening of STF is about 150 N, which increases 100 times due to the thickening of STF. A simple simulation of clustering behavior of nano-particles in STFs in the squeeze process is depicted. The experiment and simulation studies have proved that SiO2 nano-particles in STF will rearranged to cause a jammed zone in the normal load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.