Abstract

Epoxy resin has a tight three-dimensional mesh structure after curing; due to this reason, the epoxy resin is brittle and not tough enough, which becomes the main reason for the destruction of the epoxy adhesive-steel/CFRP interface under fatigue loading of CFRP-reinforced steel structures. To prepare epoxy adhesives with good performance and suitable for CFRP-reinforced steel structures, the mechanical properties of epoxy adhesives are improved by adding polystyrene (PS) microspheres. In this work, five modified adhesives with PS weight fractions of 0 wt%, 1.25 wt%, 2.50 wt%, 3.75 wt% and 5 wt% are prepared by dispersion of PS particles through an ultrasonic cell crusher using a room-temperature curing process, and the tensile, flexural and impact properties of PS adhesives with different doping are investigated. Then, the microscopic morphology of the tensile section of the colloids is observed by scanning electron microscopy (SEM). The results show that the optimum dosing of PS is 2.5 wt%, and the tensile strength, tensile modulus of elasticity, flexural strength, flexural modulus and impact strength of the adhesive are increased by 77%, 147.7%, 71%, 35% and 22%, respectively, with this dosing. SEM analysis shows that PS particles produce large deformation to absorb energy when the matrix is fractured, and crack expansion needs to bypass or shear the PS particles, thus inhibiting crack expansion and achieving the purpose of toughening. Adhesion agglomeration of PS particles in the resin is the main reason for the decrease in the mechanical properties of adhesives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call