Abstract
Pine resin obtained from the plant (Pinus Caribaea—Hondurensis) was melt blended with poly(butylene succinate) (PBS) in mass ratios of the pine resin up to 50 wt%. The blends were tested for mechanical strength, melting and decomposition temperature and internal and spherulitic morphology using tensile test, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy (SEM) and polarized microscopy, respectively. Enzymatic degradation of PBS and the pine-resin blends were investigated by porcine pancreatic and candida rugosa lipases while the antimicrobial property was studied against Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureas using the zone inhibition method. The two components were reported to be miscible and in blends with low pine resin, the thermal stability was similar to PBS. SEM micrographs showed homogeneity in the morphology of the blends. The mechanical properties of the blends showed a decrease in Young’s modulus, but an improvement in flexibility was seen when compared to PBS. Enzymatic degradation was prominent in pine resin and blends containing pine-resin content but not with PBS. The pine resin was active against all the bacteria tested except E. coli while the blends were active against P. aeruginosa and B. subtilis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.