Abstract
The application of rotating packed beds (RPBs) in solvent-based carbon capture processes, will greatly reduce the physical footprint, capital and operating cost of the process. However, in designing RPBs, correlations for predicting mass transfer parameters are generally limited in literature and their prediction accuracies have not been demonstrated independently. In this paper, an RPB absorber model was developed in gPROMS ModelBuilder® and used to test and compare different correlations for predicting the effective interfacial area, liquid and gas film mass transfer coefficients. Our results showed that the modified packed column mass transfer correlations where the “g” term (i.e. gravitational acceleration) is replaced with “rw2” (i.e. centrifugal acceleration) commonly used in literature for RPBs generally give poor predictions compared to using correlations developed specifically for RPBs. Also, the Tung and Mah correlation has better predictive accuracy for the liquid film mass transfer coefficient in RPBs than more complex correlations. Finally, a set of new data for the gas film mass transfer coefficient for RPBs were also derived from overall volumetric mass transfer coefficient (KGa) experimental data from literature. This is the first report of gas film mass transfer data for RPBs. The results in this paper will guide researchers in selecting suitable correlations for predicting mass transfer parameters in RPBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.