Abstract

The examination of maneuvering qualities of a ship is necessary to ensure its navigational safety and prediction of trajectory. The study of maneuverability of a ship is a three-step process, which involves selection of a suitable mathematical model, estimation of the hydrodynamic derivatives occurring in the equation of motion, and simulation of the standard maneuvering tests to determine its maneuvering qualities. This paper reports the maneuvering studies made on a container ship model (S175). The mathematical model proposed by Son and Nomoto (1981, “On Coupled Motion of Steering and Rolling of a High Speed Container Ship,” J. Soc. Nav. Arch. Jpn., 150, pp. 73–83) suitable for the nonlinear roll-coupled steering model for high-speed container ships is considered here. The hydrodynamic derivatives are determined by numerically simulating the planar motion mechanism (PMM) tests in pure yaw and combined sway–yaw mode using an Reynolds-Averaged Navier–Stokes Equations (RANSE)-based computational fluid dynamics (CFD) solver. The tests are repeated with the model inclined at different heel angles to obtain the roll-coupled derivatives. Standard definitive maneuvers like turning tests at rudder angle, 35 deg and 20 deg/20 deg zig-zag maneuvers are simulated using the numerically obtained derivatives and are compared with those obtained using experimental values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call