Abstract
The rate constant of malachite green (MG+) alkaline fading was measured in water–ethanol–ethylene glycol ternary mixtures. This reaction was studied under pseudo-first-order conditions at 283–303 K. In each series of experiments, the concentration of ethanol was kept constant and the concentration of ethylene glycol was changed. It was shown that due to hydrogen bonding and hydrophobic interaction between MG+ and alcohol molecules the observed reaction rate constant, $$ k_{\text{obs}} $$ , increased in the water–ethanol–ethylene glycol ternary mixtures. The fundamental rate constants of MG+ fading in these solutions ( $$ k_{1} $$ , $$ k_{ - 1} $$ and $$ k_{2} $$ ) were obtained by the SESMORTAC model. Analysis of $$ k_{1} $$ and $$ k_{2} $$ values in solutions containing constant ethanol concentrations show that in low concentrations of ethylene glycol, hydrogen bonding formed between ethanol and ethylene glycol molecules and in high concentrations of ethylene glycol, ethanol as a solvent for ethylene glycol affected the reaction rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.