Abstract

The analysis of the magnetic properties of alloys with low Curie temperature used in domestic induction heating is presented. These alloys allow the development of cookware with additional benefits with respect to regular cookware oriented to improve temperature control and the user’s safety. Firstly, an experimental method to characterize the magnetic permeability with respect to the magnetic field strength and temperature in the material is presented. Secondly, a finite element simulation method is proposed which, considering the previous characterization, allows the calculation of the electrical equivalent of an inductor-load system as a function of temperature and magnetic field. This method makes possible the application of finite element simulation in the frequency domain with nonlinear materials, which is of interest for the design of electronics associated with domestic applications of induction heating. Simulation results are experimentally verified with various ferromagnetic alloys with low Curie temperature at different power, temperature, and operating frequency ranges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.