Abstract

Abstract Natural convection and oxygen transfer characteristics in square cavity subjected to the magnetic field are studied numerically. Oxygen transfer in liquid metals has attracted much attention because it can decrease the corrosion rate of steel in contact with liquid metals. In advanced reactors, liquid lead has been utilized as an effective coolant. As indicated by many research reports that corrosion could be decreased by controlling the proper level of oxygen in the liquid lead. In this method, oxygen needs to mix in liquid lead homogenously and rapidly to produce a protective oxide layer. In this study, the impact of the magnetic force on oxygen transfer in a rectangular container is studied using the lattice Boltzmann method (LBM). Three different Schmidt numbers (Sc) and Hartmann numbers (Ha) have been simulated in this study. Some useful results are obtained such as an adverse effect was found that heat/mass transfer rates are decreased when Ha number is increased. In addition, the existence of an applied magnetic field has caused a significant increase in the required time to reach desired oxygen concentration and needs to be controlled in operation to have a faster distribution of the oxygen in the domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.