Abstract

The low-cycle fatigue (LCF) behaviors of the AL6XN austenitic stainless steel were investigated at strain rates of 3.3 × 10 −5 to 3.3 × 10 −3 s −1 and at different temperatures, respectively. The weakened cyclic softening, negative strain-rate–stress response and anomalous temperature-dependence of cycle stress reflect the dynamic strain aging (DSA) hardening during LCF at elevated temperatures. Electron microscopy observations revealed that the dislocation structure changes from the cellular structure at room temperature to the planar slip band, serving as crack initiation sites in the regime of DSA. The DSA hardening results in the reduction of fatigue resistance at elevated temperature via reducing the crack initiation and propagation life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.