Abstract

The adoption of network flow in the domain of Network-based Intrusion Detection System (NIDS) has steadily risen in popularity. Typically, NIDS detects network intrusions by inspecting the contents of every packet. Flow-based approach, however, uses only features derived from aggregated packet headers. In this paper, all publicly accessible and labeled NIDS data sets are explored. Following the advances in deep learning techniques, the performances of Long Short-Term Memory (LSTM) are also presented and compared with various machine learning classifiers. Amongst the reviewed data sets, the models are trained and evaluated on CIDDS-001 flow-based data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.