Abstract
AbstractGroup theoretic methods are presented for the transformations of integrals and the evaluation of matrix elements encountered in multiconfigurational self‐consistent field (MCSCF) and configuration interaction (CI) calculations. The method has the advantages of needing only to deal with a symmetry unique set of atomic orbitals (AO) integrals and transformation from unique atomic integrals to unique molecular integrals rather than with all of them. Hamiltonian matrix element is expressed by a linear combination of product terms of many‐center unique integrals and geometric factors. The group symmetry localized orbitals as atomic and molecular orbitals are a key feature of this algorithm. The method provides an alternative to traditional method that requires a table of coupling coefficients for products of the irreducible representations of the molecular point group. Geometric factors effectively eliminate these coupling coefficients. The saving of time and space in integral computations and transformations is analyzed. © 1994 by John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.