Abstract
ABSTRACTGasoline direct injection (GDI) systems have become dominant in passenger cars due to their flexibility in the fuel managing and the consequent advantages in the fuel economy. With the increasingly stringent emission regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the fuel spray behavior has become essential. Characteristics of free-evolving and impinging spray of iso-octane fluid, using a GDI injector from the Engine Combustion Network (ECN) circuit, were investigated by a hybrid Mie-scattering and schlieren optical technique. The experiments provided the spatial distribution and time-resolved evolution of the free, as well as the post-impingement, characteristics of the spray under various operating conditions. A customized processing algorithm, able to catch the contours of both liquid and vapor/atomized phases, was used to extract the diffusion and evaporation parameters that characterized the fuel spray. Aim of this study is a detailed understanding of a GDI spray evolution under engine-like conditions, by studying both the liquid and the vapor phases as the ambient and injection conditions varies in a controlled environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.