Abstract

The off-state current in n- and p-channel polycrystalline silicon thin-film transistors (polysilicon TFTs) is investigated systematically by conduction measurements at various temperatures and low-frequency noise measurements at room temperature. It is demonstrated that the leakage current is controlled by the reverse biased drain junction. The main conduction mechanisms are due to thermal generation at low electric fields and Poole–Frenkel accompanied by thermionic filed emission at high electric fields. The leakage current is correlated with the traps present in the polysilicon bulk and at the gate oxide/polysilicon interface which are estimated from the on-state current activation energy data. Analysis of the leakage current noise spectral density confirms that deep levels with uniform energy distribution in the silicon band gap are the main factors in determining the leakage current. The density of deep levels determined from noise analysis is in agreement with the value obtained from conductance activation energy analysis. The substantially lower leakage current observed in the n-channel polysilicon TFT is explained by the development of positive fixed charges at the interface near the drain junction which suppress the electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.