Abstract

The pulsed-field gel electrophoresis (PFG) is a newly developing technique used in the fractionation of large DNA fragments. Advances in PFG demand a better understanding in the corresponding mechanisms of DNA dynamics in the gel network. Detailed experiments are needed to verify and to extend existing theoretical predictions as well as to find optimum conditions for efficient separation of large DNA fragments. In the present study, deformation of large DNA fragments (40-70 kilobase pairs) imbedded in agarose gels were investigated by using the transient electric birefringence (TEB) technique under both singular polarity and bipolarity electric pulses at low applied electric field strengths (E less than or equal to 5 V/cm). The steady-state optical retardation (delta s) of DNA molecules is linearly proportional to E2. At a given E, the amplitude of optical retardation [delta(t)] increases monotonically with the pulse width (PW) and then reaches a plateau value [delta(t = 0) = delta s] where t = 0 denotes the time when the applied field is turned off or reversed. The field-free decay time (tau-a few minutes) is several orders of magnitudes slower than that from previous TEB observations using high electric field strengths (E-kV/cm) and short pulse widths (PW-ms). The degree of deformation (stretching and orientation) and the time of restoration to the equilibrium conformation of overall DNA chains have been related to delta and tau. In field inversion measurements, exponentially rising and linearly falling of birefringence signals in the presence of forward/inverse applied fields were observed. The rising and falling of birefringence signals were reproducible under a sequence of alternating pulses. Comparison of our results with literature findings and discussions with theories are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.