Abstract

This work is devoted to the Computational Fluid-Dynamics (CFD) simulation of laminar separation bubble (LSB) on low Reynolds number operating airfoils. This phenomenon is of large interest in several fields, such as wind energy, and it is characterised by slow recirculating flow at an almost constant pressure.Presently Reynolds Averaged Navier-Stokes (RANS) methods, due to their limited computational requests, are the more efficient and feasible CFD simulation tool for complex engineering applications involving LSBs. However adopting RANS methods for LSB prediction is very challenging since widely used models assume a fully turbulent regime. For this reason several transitional models for RANS equations based on further Partial Differential Equations (PDE) have been recently introduced in literature. Nevertheless in some cases they show questionable results.In this work RANS equations and the standard Spalart-Allmaras (SA) turbulence model are used to deal with LSB problems obtaining promising results. This innovative result is related to: (i) a particular behaviour of the SA equation; (ii) a particular implementation of SA equation; (iii) the use of a high-order discontinuous Galerkin (DG) solver. The effectiveness of the proposed approach is tested on different airfoils at several angles of attack and Reynolds numbers. Numerical results were verified with both experimental measurements performed at the open circuit subsonic wind tunnel of Università Politecnica delle Marche (UNIVPM) and literature data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call