Abstract
This paper investigated the effects of hydrogen addition to gasoline surrogates fuel-air mixture on the premixed spherical flame laminar combustion characteristics. The experiments were carried out by high speed Schlieren photography on a constant-volume combustion vessel. Combining with nonlinear fitting technique, the variation of flame propagation speed, laminar burning velocity, Markstein length, flame thickness, thermal expansion coefficient and mass burning flux were studied at various equivalence ratios (0.8–1.4) and hydrogen mixing ratios (0%–50%). The results suggested that the nonlinear fitting method had a better agreement with the experimental data in this paper and the flame propagation was strongly effected by stretch at low equivalence ratios. The stretched propagation speed increased with the increase of hydrogen fraction at the same equivalence ratio. For a given hydrogen fraction, Markstein length decreased with the increase of equivalence ratio; flame propagation speed and laminar burning velocity first increased and then decreased with the increase of equivalence ratio while the peaks of the burning velocity shifted toward the richer side with the increase of hydrogen fraction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.