Abstract

The kinetics of the acid dissociation of copper(II) complexes of novel C-functionalized macrocyclic dioxotetraamines has been studied by means of a stopped-flow spectrophotometer. The acid dissociation rate follows the law V d = C com kK 1 K 2 H 2 /(1+ K 1 H+ K 1 K 2 H 2 ). From the experimental facts we have obtained, the dissociation kinetics are interpreted by a mechanism involving the negatively charged carbonyl oxygen of the complex being rapidly protonated in a pre-equilibrium step, the rate-determining step being intramolecular hydrogen (enolic tautomer) migration (to imine nitrogen). The dissociation rate reached a plateau in the strongly acidic solution. By means of temperature coefficient method, Δ H φ , Δ S φ of the pre-equilibrium step and Δ H ≠, Δ S ≠ of the rate-determining step were obtained. The results of 13-membered macrocyclic dioxotetraamines have been discussed. The influence of the substituents to the acid dissociation rates has also been discussed. The Bronsted type linear free energy relationships do also exist in these C-functionalized dioxotetraamine copper(II) complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.