Abstract

New, nanocomposite, and ionically conducting membranes have been developed by using plasticized and crosslinked gelatin and clay (montmorillonite SCa-3) with concentration of 1–20 wt%. The samples were studied by FTIR, X-ray diffraction, UV-Vis (transmittance and reflectance), CW-EPR, HYSCORE, and ionic conductivity properties. The obtained results have revealed that the incorporation of clay has promoted changes in the physical properties of the samples. The transparency of theses membranes decreased, while the reflectance augmented with the rise of the clay content. The best ionic conductivity result of 3.49 × 10−4 S/cm2 at 25 °C was obtained for the sample with 15 wt% of clay. CW-EPR spectra of Gel-SCa-3-Na samples doped with Cu2+ ions showed that SCa-3-Na had no significant impact on the Cu2+ local coordination surroundings and HYSCORE spectra showed one and two proton signals depending on the sample. Finally, the samples were inserted in the electrochromic devices (ECDs) composed of glass/ITO/Prussian blue/gelatin-SCa-3/CeO2-TiO2/ITO/glass. The best results were registered with the ECD containing 15 wt% of clay, which changed its reflectance from 15 to 8% at 450 nm. Moreover, this ECD demonstrated to be completely reversible. The obtained results confirmed the impact of the clay on the ionic conductivity, transparency, and performance of the ECDs. In summary, the nanocomposite electrolytes seem to be very interesting materials, mainly because of their possible practical use in electrochromic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.