Abstract

A characterization of the ionic conduction of the active layer of a polymer electrolyte membrane fuel cell (PEMFC) cathode by ac impedance measurement at open-circuit potential conditions was conducted. Porous electrode theory was used to derive a compact equation, to solve for the impedance response of a cathode at open-circuit potential conditions. This equation includes a parameter R, the ratio of an ionic resistance (evaluated at the active layer/membrane interface), to the total charge-transfer resistance of the active layer. The influence of an assumed ionic conductivity distribution profile on the error in the estimation of total double-layer capacitance of the active layer from the vs. plot was also investigated in this work. The increase of ionic conductivity in the active layer of an air cathode with an increase in the ionomer loading was revealed from both impedance data and surface area measurements. A nonlinear parameter estimation method was used to extract the ionic resistance from the high-frequency region of the impedance data at open-circuit potential conditions. The assumed ionic conductivity distribution profile in the active layer was found to vary with ionomer loadings. © 2003 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.