Abstract
Photophysics of a blue light-emitting fluorescent random copolymer, consisting of arylated polydioctylfluorene (aryl-F8), polydioctylfluorene (F8), and amine comonomers in a ratio of 80:15:5 is reported. In a solution of 10-6 M, solvatochromism in absorption and photoluminescence (PL) is observed with an increased lifetime of PL as the polarity of the solvent increases. Dual fluorescence is observed in the 10-9 M diluted solution, comprising a structured emission from a localized state in the aryl-F8 comonomer and a broad emission peak from the charge-transfer (CT) state at a lower energy. Emission wavelength-dependent time-resolved photoluminescence studies in different polar media confirm the presence of the emissive intrachain CT state in this copolymer. Analyzing the PL decay kinetics, we calculated the formation rate of the intrachain CT state to be ∼3.0 × 109 s-1. Repopulation of the localized state from the CT state is observed in the lower polarity medium with a rate of 7 × 108 s-1, which is almost absent for the large Stokes-shifted CT emission in the higher polarity medium. Along with the fundamental understanding of the photophysics of the random copolymer, this study suggests that the emission spectrum can be tailored by the concentration of polymer and the polarity of surrounding media.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.