Abstract

Experimental mechanistic studies of iridium-catalyzed, enantioselective allylic substitution enabled by (phosphoramidite,olefin) ligands are reported. (η2-Allylic alcohol)iridium(I) and (η3-allyl)iridium(III) complexes were synthesized and characterized by NMR spectroscopy as well as X-ray crystallography. The substrate complexes are catalytically and kinetically competent to be intermediates in allylic substitutions of branched, racemic allylic alcohols with various nucleophiles. In addition, we have identified an off-cycle pathway involving reversible binding of molecular oxygen to iridium, which contributes to the air tolerance of the catalyst system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.