Abstract

The photocatalytic degradation of the antibiotic ciprofloxacin in water was carried out with nanosheets of graphitic carbon nitride (g-C3N4) as catalyst and visible light irradiation using low-power (4 × 10 W) white light LEDs. The aim of this study was to identify the intermediate by-products formed during the degradation and to propose a pathway for CIP degradation. To achieve this goal, photocatalytically degraded CIP solutions were analysed by liquid chromatography coupled to high-resolution mass spectrometry using a QTOF instrument. The accurate mass and the MS/MS data of the detected ions allowed us to determine the elementary composition of eight by-products and to propose the chemical structures for seven of them. Three of these by-products have been reported for the first time and the elementary composition of a fourth one that had been wrongly reported in the literature was accurately established. CIP degradation followed a pseudo-first order kinetics with a pseudo-first order kinetic constant of 0.035 min−1. In addition, a study of the influence of several scavengers showed that only the presence of triethanolamine dramatically reduced the pseudo-first order kinetic constant (0.00072 min−1), pointing out that the reactive species were the holes produced in the catalyst. Finally, the main pathway of CIP degradation seems to be the attack to the piperazine group by ·OH radicals, following heterocycle breakup and the subsequent loss of two of its carbon atoms as CO2 molecules, and then defluorination, oxidation and cleavage of the cycles of this intermediate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call