Abstract

Magnetic transmission x-ray microscopy is a novel technique to image element specifically magnetic domain structures. A lateral resolution down to 25 nm is provided by the Fresnel zone plates used as optical elements in soft x-ray microscopy. The magnetic contrast is given by x-ray magnetic circular dichroism, i.e., large magnetic contributions up to 25% to the absorption cross section of circularly polarized x rays that occur in the vicinity of, e.g., the Fe L3,2 edges (706 and 719 eV) and depend on the relative orientation of the projection of the magnetization of the sample onto the photon propagation direction. Thus, both in-plane and out-of-plane contributions to the magnetization are accessible. Here we present images of the magnetic domain structure of a (3 nm Cr/50 nm Fe/6 nm Cr) thin film system with a preferentially in-plane magnetization recorded at the Fe L edges. The samples have been prepared by thermal evaporation onto a 100 nm thin Si3N4 membrane and were mounted under a tilt of 30° with respect to the transmission direction of the photons in the full-field microscope. Corresponding images taken under a tilt of 0° ruled out out-of-plane contributions. Images recorded in applied varying external magnetic fields allowed to study the switching behavior. These trial results have a large impact on further investigations of nanostructured magnetic systems, e.g., spintronic devices and magnetic sensors with magnetic soft x-ray microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.