Abstract

Once a voice buffer is full, it remains full for a certain period, during which many packets are possibly blocked, resulting in consecutive clippings in voice. The packet loss rate during this period changes slowly and has large fluctuations. It is shown that the temporal behavior of packet loss, especially at high rate, is inherently determined by voice correlation and system capacity and is independent of buffer size. Buffering may reduce the occurrence of short blocking periods associated with low rates packet loss but does not affect long ones associated with high packet loss rates. In fact, increasing the buffer size merely extends nonblocking periods, and thereby reduces the overall average packet loss rate, but packet-loss performance within existing blocking periods is not significantly improved. A simple tool is developed for calculating the boundary performance. It is found that it is possible to design a packet-switched voice system without buffering only at the expense of supporting a fewer number of calls. The issue of voice delay allocation between source and network is discussed, and it is shown that it is more effective to keep the network delay short while extending the source delay.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call