Abstract

In HL-2A, an inverse sawtooth oscillation is observed with a long-lasting m/n = 1/1 mode during ECRH phase with power deposition inside sawtooth inversion radius (inner-deposited ECRH), while a normal sawtooth instead appears when the ECRH power is deposited outside sawtooth inversion radius (outer-deposited ECRH). Aluminum is then injected as a trace impurity with laser blow-off (LBO) method into the inner- and outer-deposited ECRH phases of HL-2A discharges to investigate the effect of ECRH on impurity transport. Temporal behavior of soft x-ray (SXR) array signals is analyzed with a 1D impurity transport code, and radial structures of impurity transport coefficients are obtained. The result shows that the radial transport of Al ions is strongly enhanced during the inner-deposited ECRH phase. In particular, an outward convection velocity is developed with positive values of 0 ⩽ V(ρ) ⩽ 3.8 m s−1 in ρ ⩽ 0.5, while the convection velocity is inward in ρ ⩾ 0.6. In the outer-deposited ECRH discharge, on the other hand, the convection velocity takes a big negative value in ρ ⩽ 0.4 and close to zero at ρ ~ 0.6. In ohmic discharges, an inward V(ρ) always appears in the whole plasma radii and gradually increases toward the plasma edge (−3.2 m s−1 at ρ = 1). The simulation result also indicates that centrally-peaked Al ion density profiles presented in the outer-deposited ECRH discharge can be flattened by the inner-deposited ECRH. Modification of impurity transport is discussed in the presence of long-lasting m/n = 1/1 MHD mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.