Abstract

A physical model of analysing the behaviour of impurities out of coronal equilibrium in tokamak plasmas has been proposed. Through solving the time-dependent rate equations including the effects of atomic processes and the particle transport losses, the ionization state distribution is obtained for a range of low Z impurities such as helium, carbon, oxygen and argon. By using the ionization state distribution of these impurities, the radiation rate coefficients and the mean charge state changing with plasma temperature are calculated. The results show that the mean charge state 〈Z〉 is sensitively dependent on the parameter neτ, and this is the reason why the radiation power of impurities under non-coronal equilibrium conditions is several orders of magnitude higher than that under coronal equilibrium condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.