Abstract
The Z-pinch dynamic hohlraum (ZPDH) is one of high-power X-ray sources that has been used in a variety of high energy-density experiments including inertial confinement fusion (ICF) studies. Dynamic hohlraums driven by a 12-mm and a 18-mm-diameter single tungsten wire arrays embedded with a C16H20O6 foam, respectively, exhibit no visible differences in radiation from the axial exit, although the radial radiation is a little higher in a large array. The analysis of the images suggests that the implosion of a large array is quasi-continuous and has a faster imploding velocity, indicating that the large array is matched to the embedded foam and, oppositely, the small array is mismatched. The analysis also shows that the Rayleigh-Taylor instability develops much harder in implosions of a large array, and this leads to a lower hohlraum temperature. The conclusion was drawn that, for the purpose of enhancing the hohlraum temperature, increasing the conversion efficiency of kinetic energy into thermal energy is more important than increasing the kinetic energy from wire plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.