Abstract

ZnOCeO2 nanocomposites have been successfully prepared by a simple sol-gel approach via employing fructose as a green capping agent. The effect of various parameters including the different precursors of zinc, calcination time and temperature on the morphology and size of as-synthesized products were investigated to reach the optimum conditions. Different analysis to study the synthesized products was utilized. We used X-ray diffraction (XRD) patterns to investigate the crystal structure of the products. The chemical composition of the nanocomposite was characterized by energy-dispersive X-ray analysis (EDX) and Fourier transform infrared (FT-IR) analyses. To study the size and morphology of nanocomposites were employed scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. The structural properties (porosity and specific surface area) of nanocomposite were evaluated by BET analysis. The performance of metal oxides as a host for hydrogen storage has not been widely studied. Albeit the technology of hydrogen energy enhanced gradually, the performance of metal oxides as a host for hydrogen adsorption has not been widely studied. According to our knowledge, the electrochemical hydrogen storage of prepared ZnOCeO2 nanocomposite was investigated via chronopotentiometry method in KOH (6 M) electrolyte, for the first time. The maximum discharge capacity of the optimized product (S6) was observed at 2400 mAh/g after 20 cycles. The results showed the synthesized ZnOCeO2 nanocomposites can be used as a suitable candidate for storage of energy in future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.