Abstract

Metal hydrides are interesting materials from a fundamental as well as practical point of view. Hydrogen storage applications have been the main driving force of research on these materials but lately, uses such as thermal storage are considered. In this presentation, we will review the use of neutron diffraction for the development of new metal hydrides. A good candidate for hydrogen storage applications is the low cost intermetallic compound TiFe which operates near room temperature (RT) under mild pressure conditions. However, the biggest disadvantage of TiFe alloy synthesized by conventional metallurgical method is it poor activation characteristics [1]. The alloy reacts with hydrogen only after complicated activation procedure involving exposure to high temperature (~4000C) and high pressure for several days. In the '90, some researches showed that the change in the nanocristallinity can modify the sorption property of the TiFe[2]. Other research works found that palladium increase the contaminant resistance. However, addition of palladium is too expansive for practical applications [3]. Recently, we found that, when doping TiFe with Zr and Zr7Ni10, the activation could be easily done at room temperature. We present here a neutron diffraction study of these compounds that shows the structural difference between the activated compound and the one cycled under hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.