Abstract

Recently, the search for an effective method for producing ultrapure hydrogen has been one of the most urgent tasks, which allows us to solve industrial problems where the use of hydrogen with a purity of more than 99.9999% is critical. Hydrogen makes up 10% of the mass of living systems on our planet, but the main source of its production is carbon raw materials, in particular natural gas, from which ≥90% of the world's hydrogen is produced. One of the most promising methods for the evolution of hydrogen from gas mixtures resulting from steam reforming is single-stage membrane separation to produce ultrapure hydrogen. The development of a membrane for separating hydrogen from gas mixtures is one of the most important tasks of hydrogen energy. We know that the hydrogen molecule is diatomic - H2. Under normal conditions, it is a gas without color, odor or taste. Hydrogen is readily soluble in many metals (Ni, Pt, Pd, etc.), especially in palladium (850 volumes of H2 per 1 volume of Pd). The solubility of hydrogen in metals is associated with its ability to diffuse through them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.