Abstract
The membrane skeleton, responsible for shape and mechanical properties of the red cell, was purified by the Triton extraction procedure in presence of 5 mM, 150 mM or 600 mM NaCl. The proportion of spectrin, protein 4.1 and actin present in erythrocyte skeletons does not depend on the molarity of NaCl used. In contrast ankyrin, protein band 3 and protein 4.2 are removed from skeletons as the ionic strength increased. Solubilization assays of membrane skeletons were used to study protein interactions inside the skeleton. Solubilization was performed by Tris, a non-selective disruptive reagent, or by p-mercuribenzene sulfonic acid (PMBS), which principally release spectrin and actin. Tris action was assessed by calculation of the percentage of solubilized proteins, which increased proportionally with Tris molarity. PMBS action was kinetically determined as the decrease in skeleton turbidity. With these two reagents, we observed a lower dissociation of skeletons prepared with high ionic strength buffer. Erythrocyte pretreatment with okadaic acid, an inhibitor of serine-threonine phosphatases, revealed a phosphorylation-induced skeleton gelation and a better resistance to Tris-solubilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.