Abstract

A promising 2-mm-long highly coherent air-clad suspended core planar Si-rich SiN tapered waveguide is proposed for supercontinuum generation in the midinfrared. Supercontinuum evolution is investigated by tuning the waveguide for both of the transverse-electric (TE) and transverse-magnetic (TM) polarizations employing pump at 1.55 m with a pulse duration of 50-fs and peak power of 50 W. Optimum waveguide dimensional parameters including width and thickness are obtained between 1.5-3 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula> m and 250 nm for TE excitation and 270–330 and 1.5 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula> for TM excitation, respectively, keeping slab thickness constant at 100 nm for both the designs. Initially, SC coverages are investigated for two uniform sections situated at the terminal points of the waveguide. Spectral coverages are also studied for two types of tapered approaches: increasing order tapering (IOT) and decreasing order tapering (DOT). In the case of uniform waveguide, simulation results of either excitation show that SC coverage can be predicted beyond 5 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula> in the midinfrared. On the other hand, width varying IOT approach for TE and DOT approach for TM excitation make better impacts both in spectral extension and spectral flatness owing to simultaneous variations of dispersion and nonlinearity along the pulse propagation direction. Thus, the midinfrared supercontinuum extension up to 6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula> by TE and 6.3 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula> by TM with better spectral flatness can be predicted by the proposed taper compared to the traditional waveguide design. Finally, the coherence of the generated SC is also studied for the various tapering coefficients at the proposed waveguide output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.