Abstract

The structural and elastic properties of praseodymium monochalcogenides (PrX: X = S, Se, Te) and monopnictides (PrY: Y = P, As, Sb, Bi) with NaCl-type structure have been investigated by using an interionic potential theory with necessary modification to include the effect of Coulomb screening due to the delocalized f-electrons of rare earth ion. The calculations are done at ambient as well as at high pressure. The structure of the high pressure phase of PrX compounds is CsCl-type while all the PrY compounds have been found to undergo from their initial NaCl-type structure to high pressure body centered tetragonal (BCT) structure, which can be seen as the distorted CsCl-type with c/a ratio ≈ 0.82–0.87. The calculated transition pressures are in good agreement with the experimental results. The elastic properties like second-order elastic constants for PrX, Y compounds are calculated for the first time. The nature of the bonding is also predicted by calculating the distance between the ions with the increasing pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call